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Abstract
Syntrophic systems are common in nature and include forms of obligate mutualisms in which each participating organism or
component of an organism obtains from the other an essential nutrient or metabolic product that it cannot provide for itself.
Models of how these complementary resources are allocated between partners often assume optimal behavior, but whether
mechanisms enabling global control exist in syntrophic systems, and what form they might take, is unknown. Recognizing
that growth of plant organs that supply complementary resources, like roots and shoots, can occur autonomously, we present
a theory of plant growth in which root-shoot allocation is determined by purely local rules. Each organ uses as much as it
can of its locally produced or acquired resource (inorganic nitrogen or photosynthate) and shares only the surplus. Subject
to stoichiometric conditions that likely hold for most plants, purely local rules produce the same optimal allocation as
would global control across a wide range of environmental scenarios, with sharing the surplus being the specific mechanism
stabilizing syntrophic dynamics. Our local control model contributes a novel approach to plant growth modeling because it
assumes a simple mechanism of root:shoot allocation that can be considered a higher-level physiological rule, from which the
optimal growth outcome emerges from the system’s dynamics, rather than being built into the model. Moreover, our model
is general, in that the mechanism of sharing the surplus can readily be adapted to many obligate syntrophic relationships.

Keywords Resource partitioning · Root:shoot allocation · Obligate syntrophy · Optimal growth · Plant growth ·
Dynamic energy budgets

Introduction

Nature offers many examples of obligate mutualisms in
which participating organisms exchange resources, such as
energy, essential micro- or macro-nutrients, or metabolic
products, that they cannot provide for themselves. The
resulting partnership may take the form of a holobiont
(Mindell 1992; Rohwer et al. 2002; Bordenstein and Theis
2015), such as (1) dinoflagellates coexisting with corals,
jellyfish, or molluscs (Muscatine and Porter 1977), (2) an
association of free-living organisms such as leaf-cutter ants
and fungi (Kang et al. 2011), or (3) engineered non-mating
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yeast cells where each supplies an essential metabolite to
the other strain (Shou et al. 2007).

The allocation of complementary resources to organs
within the same organism is analogous to resource sharing
between partners in a holobiont. An example comes from
plants, which, unlike unitary animals, are modular, in
that growth of organs such as roots and shoots can
occur somewhat autonomously (Haukioja 1991). Roots and
shoots supply complementary resources to the whole plant,
which is also similar to resource sharing in a holobiont:
roots supply water and nutrients required by the shoots
for photosynthesis and the construction of photosynthetic
tissues, while the shoots synthesize carbohydrates that are
required for cellular respiration and tissue construction
in the root. How the plant’s resources are allocated to
these organs is a principal determinant of whole plant
growth, survival, and reproduction, and, ultimately, the
environment to which a plant species is adapted (Reich
2002; Poorter et al. 2012). Moreover, the ratio between root
and shoot biomass plastically responds to the environment
(Reich 2002; Weiner 2004), leading to the hypothesis
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that plants, like holobionts, allocate resources between
these organs (or partners) in a way that maximizes fitness
(Harper-and-Ogden 1970). In contrast to organs within
a plant, individuals interacting in a syntrophic holobiont
have distinct genotypes. From an evolutionary perspective,
natural selection should operate to produce ecological
resource allocation strategies that independently maximize
the fitness of each organism (Bordenstein and Theis 2015;
Moran and Sloan 2015). The processes regulating how
individuals (in the case of the holobiont) or organs (in
the case of a single organism) share resources are poorly
understood, but the diverse ecological contexts and the
evolutionary persistence of these partnerships across a broad
range of taxa suggest that general dynamical mechanisms
may be involved. Dynamic models of the control of resource
sharing in such partnerships are therefore fundamental to
understanding their functional ecology and evolution.

Many models describing resource allocation and growth
in plants take an evolutionary approach, in which resources
are distributed among competing functions in a way that max-
imizes a whole plant proxy for fitness, such as whole plant
growth rate or reproductive output from an annual plant
(Brouwer 1963; 1983; Bloom et al. 1985; Wilson 1988;
Franklin et al. 2012). Drawing from economic theory, the
functional equilibrium or balanced growth hypothesis states
that endogenous resources are optimally allocated among
competing processes so that each resource limits all processes
to the same degree (Bloom et al. 1985). Applied to roots
and shoots, the functional equilibrium hypothesis predicts
that endogenous resources are preferentially and plastically
partitioned to the above or belowground compartment that
acquires the exogenous resource currently most limiting to
whole plant growth in a changing environment (Bloom et al.
1985; Lerdau 1992), a strategy that has been observed in
real plants (Weiner 2004; Poorter and Nagel 2000). Implicit
in the use of dynamic optimization to model resource allo-
cation and growth is that there is some form of “global”
(e.g., hormonal) control at the level of the whole organism
that can sense deficiency in a particular function and then
adjust allocation in such a way as to achieve and maintain
the optimal allocation. For example, Iwasa and Roughgar-
den (1984) used a plant model in which the availability of
a single resource, photosynthate, determines plant growth,
with the rate of its accumulation assumed to be a function
of shoot and root biomasses. They assumed that the time-
dependent proportions of photosynthate allocated to root,
shoot, and fruit are controllable at the level of the whole
organism, with allocation chosen so as to optimize repro-
duction over the lifetime of the plant. Velten and Richter
(1995) studied in detail a simpler model in which the objec-
tive was to maximize vegetative biomass (root plus shoot).
Nevertheless, the assumption of global control is implicit in

all such models, else there would be no way to achieve the
optimal solution.

Other models still assume an objective function that
is maximized, and also specify some physiological detail
as to how that optimality is achieved. Optimal allocation
outcomes have been achieved using the Liebig minimum
rule to determine how resources limit whole plant growth
and metabolic scaling rules to determine the rate of tissue
production (Lin et al. 2014). Alternatively, many models
assume total photosynthetic carbon gain is maximized
and provide a physiological function that dictates how
much photosynthate is gained, given particular biomasses
of root and shoot (e.g., Sterck and Schieving 2011;
Reynolds and Pacala 1993). There are, however, a few
complications of assuming that there is a global controller
for resource-allocation or sharing in an optimization
setting (Wilson 1988; Cheeseman 1993). First, allocation
patterns are the product of several interacting physiological
processes, not one process (Cannell and Dewar 1994).
Second, it is not known if such an “optimizing” global
controller that could integrate these processes exists for
single organisms or organisms involved in syntrophic
relationships. Alternatively, for example, in plants natural
selection may have operated to produce a set point for
root:shoot biomass ratio for reasons that may be unrelated to
optimality. When perturbed off the set point, the plant may
grow in a way that reestablishes this genetically determined
functional equilibrium (Reich 2002). Third, in terms of
modeling, one needs to define a priori the quantity to be
optimized and to provide mechanisms dictating how that
optimality is achieved. Yet, the physiological mechanisms
that control resource allocation are poorly understood, even
in plants, for which models of root:shoot allocation have a
long history (Wilson 1988).

An alternative to making ad hoc assumptions about
an objective function for optimization is an ecologically
based approach to resource allocation between roots and
shoots that involves considering the interactions between
a plant and its conspecifics in a population or community
in a game-theoretical context (King 1993; McNickle and
Dybzinski 2013). Farrior et al. (2013) used a physiological
plant model and explicit competitive interactions for water
in a finite habitat. This approach allowed calculation of
evolutionarily stable strategies (ESSs) without the a priori
choice of an objective function, as the ESS represents an
allocation strategy that cannot be invaded by an alternative
phenotype (Farrior et al. 2013), an approach also used
to model above- versus belowground carbon allocation at
the forest stand scale (Dybzinski et al. 2011). While still
assuming global control, this approach does not require
hypothesizing an arbitrary target for optimization, since the
outcome is that a plant allocates resources to roots and
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shoots in whatever way makes it the most competitive in the
community.

A separate body of literature starts at the level of
physiology and does not explicitly consider evolutionary
or competitive processes. Thornley (1972) proposed that
root-shoot ratio could be regulated without global control,
but through a representation of source, transport, and
sink processes associated with differential resource capture
and use by roots and shoots, which he termed the
transport-resistance (TR) framework (Thornley 1998). A
two-compartment, two-resource model, the TR framework
assumes a mechanism for local control of resource
distribution between organs: a translocation rule that
promotes equalization of the concentrations of resources
(carbon and nitrogen) in root and shoot and that is
determined passively by differences in the concentrations
and resistances to their translocation between organs.
Effectively, translocation processes compete with the
organs’ utilization processes for the resources, so that even
when the uptake capacity of an organ is deficient, relative to
what is required for maximal growth, some of the resource
that it collects will still be transferred to the other organ.
The TR framework has been incorporated in more elaborate
physiological models, examples being a parameter-rich
model in Chapter 5 of Kooijman (2010) and a model by
Feller et al. (2015). In addition to TR, Kooijman’s model
includes three types of reserve in each of root and shoot.
There are no published studies other than the few plots in
Kooijman (2010), but we are aware of ongoing research on
an adaptation of this model by R. Schouten and M. Kearney
(University of Melbourne, private communication).

Other models of plant growth and resource allocation to
roots and shoots that do not include some form of global
control have used strictly local rules to determine allocation
(Cheeseman 1993; Cheeseman and R Barreiro 1996). With
two compartments and two resources (carbon and nitrogen),
the rule to distribute the resources was that each organ
automatically supplies the other with a fixed percentage
of the resource that it acquires. While this rule implies a
local mechanism, it does not involve any form of control,
since a fixed parameter controls the resource distribution,
which thus cannot change if conditions change. The growth
rates of root and shoot are determined by multi-parameter
polynomial functions of the concentrations of carbon and
nitrogen in the organs. Thus, the good fit to data of this
model likely was achieved because of its many parameters,
rather than because of the local control mechanism per se.

We offer a new approach to modeling plant growth
and root:shoot allocation—the local control theory of plant
resource allocation—that derives from recent theory for
obligate syntrophic symbiosis. This approach assumes a
simple mechanism of root:shoot allocation, which we refer
to as sharing the surplus, from which the optimal plant

growth and allocation outcomes emerge from the system’s
dynamics, rather than being built into the model or being
contingent upon the composition of the local competitive
community. Instead of invoking specific physiological
mechanisms controlling movement of resources between
roots and shoots, such as translocation resistance, we
assume that each operates selfishly, and our model is
agnostic as to the specific physiological mechanisms
involved. The local control theory is an advance because it
provides a parsimonious theory by which optimal patterns
of allocation are obtained in plants and, more broadly,
by which symbiosis is regulated, without requiring any
coordination between the partners. We draw on previous
models of reef corals (Muller et al. 2009; Cunning et al.
2017) that were inspired in part by previous descriptive
models by Kooijman (2001) and on a broader discussion of
symbiosis by Kooijman et al. (2004). In the coral holobiont,
intracellular dinoflagellates of the genus Symbiodinium
perform photosynthesis using nutrients acquired by the
animal host, and the animal in turn uses photosynthate from
the symbiont as a source of chemical energy and carbon.
Host and symbiont were assumed to operate “selfishly,”
making only surplus resource or metabolic product available
to the partner. Such local control of resource sharing offers
an alternative to global control and has the advantage of
not requiring assumptions as to how global control operates.
We constructed a conceptually similar ordinary differential
model for a plant with inorganic nitrogen and photosynthate
as the shared resources (Kooijman 2010). Roots and
shoots are each able to supply only one of the resources,
either through assimilation from the environment (roots
and nitrogen, analogous to the coral) or through synthesis
(shoots and photosynthate, analogous to Symbiodinium).
There is no global control of resource sharing, as each
partner only passes surplus to the other, in keeping with
early hypotheses for the regulation of root and shoot growth
(White 1937). Each partner’s biomass production utilizes
the resources in a fixed stoichiometric ratio (Davidson 1969;
Garnier 1991). Partners may differ in the extent to which
each needs the resource supplied by the other, in keeping
with stoichiometric differences between organs such as
roots and shoots. Production kinetics are modeled as a
function of the input streams of the two resources. Resource
assimilation rates are modeled as a function of the relevant
partner’s biomass (Muller et al. 2001).

We used linearized stability analysis to derive conditions
for achieving a stable equilibrium between the assimilation
capacities of roots and shoots. This analysis shows that the
passive allocation system of relying on sharing of surplus
resources as a mechanism of local control achieves the same
growth rate and biomass allocation as could be achieved
by a hypothetical global controller, under a broad range of
conditions. An investigation of the transient dynamics that
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Table 1 List of symbols
(dimensionless unless
otherwise specified)

Symbol Meaning Equation

F , FR , FS Synthesizing unit function (generic, root, shoot) (mass/time) (3, 14, 15, 16, 19)

h Reciprocal of k in k family of SU functions (20)

k Exponent parameter in k family of SU functions (19)

p Scaled relative rate of change of u (30)

QR , QS Production rates for roots, shoots (mass/time) (3)

rR , rS Recycling fluxes of roots and shoots (mass/time) (7)

R Active biomass of roots (mass) (2)

S Active biomass of shoots (mass) (2)

TR , TS Turnover rates for root and shoot mass (mass/time) (6)

UC , UN Assimilation rates for C and N (mass/time) (4)

u, u∗ Assimilation ratio (αCS)/(α̂NR) and equilibrium value (12, 25)

û Modified assimilation ratio (α̂CS)/(α̂NR) (includes
resorbed N in shoots)

(21)

V (z), W(z) Auxiliary functions for uniqueness (31, 34)

x, y Auxiliary variables for the symmetric ratio-based SU (28)

αC , αN Assimilation rate constants for C and N (1/time) (4)

α̂N Acquisition rate constant for N (1/time) (includes resorption in root) (8)

α Acquisition rate constant ratio (αC/α̂N ) (26)

β Stoichiometric ratio (ηS/ηR) (1)

βc Critical value of β for guaranteed stability (32)

γ Dimensionless loss rate constant difference ((γS − γR)/α̂N ) (26)

γR , γS Root and shoot tissue loss rate parameters (1/time) (6)

Γ Contribution of N resorption to shoot SU (8)

ηR , ηS N:C ratios for root and shoot formation (1)

ρC , ρN Rejection fluxes of C and N (mass/time) (5)

σR , σS N resorption factors for root and shoot (7)

Φ(z), Θ(z) Ratio-based synthesizing unit function and complement (17, 20, 29)

occur in response to changes in environmental conditions or
a drastic loss of root or shoot tissue shows that the response
achieved via local control is actually superior in many
scenarios to the expectations of the functional equilibrium
hypothesis described above.

Amodel for growth of an idealized plant

Our idealized plant has two components, called “roots”
and “shoots.” Their biomasses, denoted by R(t) and S(t)

respectively, are the primary state variables in our model.
The former is an abstraction of the organ responsible
for assimilating water and macronutrients, while the
latter is an abstraction of the organ for absorbing light
and assimilating carbon into photosynthate. We call the
principal macronutrient “N” and the photosynthate “C.” The
“biomass” of each component is defined to include only
biologically active tissues, and therefore does not include
xylem, cork, or bark, which are functional tissues comprised
of dead cells. Formation of functional tissues comprised

of dead cells, for example, development of xylem from
the vascular cambium, is considered to be a portion of the
turnover of root and shoot biomasses.

We assume that assimilated resources are used immedi-
ately to create new root and shoot biomass, with no explicit
incorporation of time delays or storage. While storage of
carbohydrates and nutrients is known to occur in plants
(Chapin et al. 1990), the dynamics, physiological control,
and functional relevance of storage is debated (Sala et al.
2010), and our focus is on elucidating the dynamical prop-
erties of a resource allocation model that does not assume
global control. We discuss the potential impact of reserves
on dynamics in the “Discussion” section.

The core assumptions, and the notation for state variables
and for the flows of C and N, are shown in Fig. 1 and listed
below (see Table 1 for a summary of notation).

1. Root biomass and shoot biomass have fixed, but
different, stoichiometries. We define one unit of R to be
the amount of that component that is made using one
mole of C and ηR moles of N; similarly, one unit of S
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Fig. 1 Schematic of model
resource flows: C and N arrive
at the shoot SU from
photosynthetic capture and N
rejection from the root SU,
respectively; similarly, N and C
arrive at the root SU from root
assimilation and C rejection
from the shoot SU; each SU
creates the corresponding plant
tissue; shoot and root tissue are
lost to herbivory and/or
senescence, with some fraction
of the N recycled to the local SU

is made from one unit of C and ηS units of N. The ratio
of the stoichiometric factors,

β = ηS

ηR

, (1)

is a dimensionless measure of the relative N:C ratio in
shoot formation to that of root formation.

2. Resources are brought into the plant from the environ-
ment, with UC the C assimilation rate in shoots and UN

the N uptake rate into roots from soil. These rates are
proportional to the shoot and root biomasses, respec-
tively, with rate constants αC and αN . For convenience
of language, we use the term “assimilation rate” for
both of these. The rate constants can be thought of as
measures of resource availability, with small αC rep-
resenting low levels of incident light and small αN

representing a soil that is low in nutrients.
3. Production of root and shoot biomasses occurs at “syn-

thesizing units” (SUs), which are idealized production
centers that create root and shoot biomasses from inputs
of C and N. Formulae for production rates at SUs are
presented in a separate subsection.

4. Any C input flux to the shoot SU that is not used to
produce shoot biomass constitutes a “rejection” flux,
denoted by ρC , that is translocated to the root SU.
Similarly, the flux, ρN , of unused N from the root SU is
rejected to the shoot SU.

5. Rejected C from root SU and rejected N from shoot SU
are “wasted” resources that are lost to the environment.

6. Root and shoot biomass are turned over at rates (TR

and TS) that are proportional to the relevant biomass,
with rate constants γR and γS . Turnover combines a
variety of mechanisms, including maintenance (which
primarily removes C as CO2), herbivory, senescence,
and wood formation.

7. Fractions σR and σS of the N used in the original
production of lost root and shoot biomass are resorbed
and sent to the local SU as an additional input stream.
Smaller resorption rates for C can be accommodated in
the model by decreasing the net loss rate coefficients
γi , while the larger resorption rates for N are included
explicitly. The fractions σi can be adjusted to account
for variation among species in the fraction of biomass
loss that is owing to senescence and in the efficiency of
the plant in resorbing N from senesced tissue.

The model dynamics are then given by two biomass
balance equations

dR

dt
= QR − TR,

dS

dt
= QS − TS, (2)

together with a set of equations implementing the model
assumptions to yield formulae for the flows in Fig. 1:

Biomass production rates:

QR = FR

(
ρC, η−1

R (UN + rR)
)

, QS = FS

(
UC, η−1

S (ρN + rS)
)

,

(3)

C and N assimilation rates:

UN = αNR, UC = αCS; (4)

C and N rejection rates:

ρN = UN + rR − ηRQR, ρC = UC − QS (5)

Turnover rates:

TR = γRR, TS = γSS. (6)

N resorption rates:

rR = ηRσRTR, rS = ηSσSTS (7)

In the production rate equations (3), the functions Fi (i =
R, S) relate the output from the root and shoot SUs to the C

485Theor Ecol (2020) 13:481–501

Author's personal copy



and N input rates for component i. The stoichiometric factor
η−1

i is incorporated into the argument of the function so that
the SU models can assume that the correct stoichiometric
ratio of the inputs is always 1:1.

We define new compound parameters

α̂N ≡ η−1
R αN + σRγR, Γ ≡ σSγS

αC

, (8)

where α̂N simplifies the notation by incorporating the
assimilation and recycling of N in the roots in a single
term, while being dimensionally equivalent with the
corresponding parameter αC for the C input to shoots, and
Γ is a dimensionless measure of the contribution of N
recycling in the shoot to shoot SU dynamics. Substituting
from (4)–(7) into (2) and (3) and simplifying with (8) yields
the dynamic equations

dR

dt
= QR − γRR,

dS

dt
= QS − γSS, (9)

with the production rates determined by the coupled
algebraic SU system

QR = FR(αCS − QS, α̂NR), (10)

QS = FS(αCS, β−1α̂NR − β−1QR + Γ αCS). (11)

The assimilation ratio

So far we have used the root and shoot biomasses R and
S to represent the state of the system. Because there is no
principle of diminishing returns in our model plant, it is
a reasonable hypothesis that the system might eventually
reach an equilibrium shoot:root ratio S/R, with shoot and
root growing at a common rate. This suggests modeling
the system dynamics using just one of the components as
a measure of plant size while using the shoot:root ratio
to represent the balance between the organs. We can go
one step further by recognizing that the system behavior
depends on the assimilation rates achieved by the roots and
shoots rather than the biomasses per se. Hence, the best
choice of variable to represent shoot:root balance is the
“assimilation ratio,” defined as the dimensionless ratio of
the C assimilation rate in the shoot to the total N acquisition
rate in the root SU (including N resorbed from root turnover
as well as N assimilated from the environment):1

u = αCS

α̂NR
. (12)

1This omits the resorbed N in the shoots. Functionally, there is no
difference between N collected from the environment by roots and
N resorbed from senesced roots, since both streams are sent to the
root SU. However, N resorbed in the shoot is best omitted from the
assimilation ratio, except as noted below.

The differential equation for u follows from the root and
shoot differential equations (9):

1

u

du

dt
= QS

S
− QR

R
− γS + γR . (13)

SU functions

We consider three examples of SU functions, each moti-
vated by different considerations. We first use an idealized
SU, the Liebig minimum rule, which assumes both input
streams are utilized for biosynthesis to the maximum extent
consistent with stoichiometry. This model is obviously an
extreme caricature of any plausible biochemical network,
since chemical transformations always involve some degree
of inefficiency. Nonetheless, we consider it because it
allowed us to analytically derive many important qualita-
tive properties of the model that carry over to more realistic
representations. Second, we look at an abstraction of the
dynamics of a complex biochemical network involved in
biosynthesis–the parallel complementary synthesizing unit
(PCSU). This was proposed by Kooijman (1988) as a gen-
eralization of Michaelis-Menten (MM) enzyme kinetics for
situations with two input streams of substrate. We include
it because it is a popular representation in studies based
on Kooijman’s DEB theory. Finally, we propose a broad
class of SU functions that we call the “kSU.” This family
of SU functions contains a parameter k that allows for any
degree of tissue construction “efficiency” (see “Symmet-
ric ratio-based SU functions”), with the perfectly efficient
minimum rule as a limiting case.

The minimum rule SU

In mathematical terms, the Liebig minimum rule is
represented by the function

Fmr(v, w) = min[v, w] (14)

for any two scaled input streams v and w of C and N,
respectively.

The parallel complementary SU

We outline the rationale for the PCSU in Appendix A
(online resource), where we show that with one additional
simplifying assumption to those of Kooijman, the formula
for production rate from a PCSU with input fluxes v and w

is

Fpc(v, w) = vw(v + w)

v2 + vw + w2
. (15)
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Symmetric ratio-based SU functions

Both the minimum rule SU and the PCSU are examples of a
broad class of possible SU functions that are symmetric and
nonlinear only with regard to the ratio of inputs; that is, they
can be written in terms of a function Φ such that

F(v, w) = v Φ
(w

v

)
= w Φ

( v

w

)
. (16)

These functions are

Φmr(z) = min(z, 1), Φpc(z) = z + z2

1 + z + z2
(17)

for the minimum rule SU and the PCSU, respectively. The
observation that the PCSU can be represented by a function
of the input ratio alone facilitates the analysis of the model.
Other symmetric ratio-based SU functions are possible, with
some restrictions. Given a fixed amount of the resource u,
any continuously differentiable SU function should satisfy
F(u, 0) = 0, ∂F/∂v ≥ 0, and limv→∞ F(u, v) = u; we
therefore assume corresponding properties for Φ:

Φ(0) = 0, Φ ′(z) ≥ 0; Φ(∞) = 1. (18)

A key property of SU functions is the quantity Φ(1),
which is the production rate relative to the maximum when
the resources arrive in the stoichiometric ratio. We call this
quantity the “efficiency” of the SU. The minimum rule has
the maximum possible efficiency 1, while the efficiency for
the PCSU is noticeably lower, at 2/3. In order to explore the
ramifications of SU efficiency, we consider an empirically
based family of SU functions (henceforward referred to as
the “kSU”) defined by

Fk(v, w)−k = v−k + w−k, (19)

corresponding to the scaled SU function

Φk(z) = (1 + z−k)−h, h = 1/k. (20)

The efficiency of these functions is given in terms of k by

E(k) = 2−1/k .

We can therefore choose a member of the family to yield
any efficiency between 0 and 1, exclusive, by setting

k = ln 2

ln(E−1)
.

As k approaches infinity, the kSU converges to the
minimum rule SU; hence, we can obtain behavior that is
similar to the minimum rule by choosing a large value of
k. The PCSU is not a member of the k family; however,
the kSU that matches the PCSU in efficiency (k =
ln 2/ ln 1.5 ≈ 1.71) can be seen to be an excellent empirical
approximation to the PCSU (Fig. 2). Thus, we can think of
the kSU as an empirical generalization of the PCSU.

0 1 2 3 4
0

0.5

1

MRSU
PCSU
kSU

Fig. 2 Comparison of SU functions: the two thin solid curves are the
kSU with efficiencies of 0.8 (upper) and 2/3 (lower)

Analytical and numerical methods

The model dynamics are not specified solely by the combi-
nation of the balance equations and the flux specifications.
This is because the production and rejection fluxes are
defined implicitly with an algebraic system that may have
multiple solutions. The analysis necessarily focuses on iden-
tifying conditions whereby multiple solutions can occur and
elucidating the dynamics of the state variables under these
conditions.

Recognizing this inherent difficulty, we adopt two
contrasting approaches that allow unambiguous integration
of the ODEs even with multiple possible solutions to the
algebraic equations, and have verified that, with one caveat
mentioned below, both give identical solutions for a broad
range of parameter values and initial conditions.

The simplest approach recognizes that it is possible to
specify a variant of Euler integration for the differential
equations that avoids solving any algebraic equations. Mass
balance is achieved by assuming that “transfer” of material
between components of the system takes one infinitesimal
time step, dt . Thus, for example, carbon rejected from the
shoot SU at time t arrives at the root SU at time t + dt .
Approximating this infinitesimal time step with a very small
integration time step �t allows us to update the two state
variables, R and S, using a set of difference equations. Very
occasionally this method exhibits numerical instability, but
this can be avoided using modified Euler integration.

An alternative approach to assuring a unique solution
is to impose an additional problem requirement that the
rejection fluxes should be continuous in time whenever
possible. For simulations, the algebraic SU system and the
associated dynamical system can be solved unambiguously
over consecutive intervals in time in which the assimilation
ratio u is monotone (“Analysis and results for the minimum
rule SU” and “Analysis and results for the continuously
differentiable symmetric ratio-based SU”). The algebraic
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system for the minimum rule SU is simple enough to
be solved analytically, allowing a complete description of
the dynamics on such an interval without any numerical
analysis (“Analysis and results for the minimum rule
SU”). In the case of the general continuously differentiable
symmetric ratio-dependent SU, any numerical ODE solver
can be used. Discontinuities are treated numerically as
“events” (Shampine and Thompson 2000), in which the
right side of a differential equation may change abruptly,
by using the continuous-rejection-flux rule to patch the
solutions together. We will also use the continuous-
rejection-flux rule in the general analysis, where it will be
seen to be sufficient to guarantee a unique solution of the
dynamical system.

Analysis and results for theminimum rule SU

We use the term “minimum rule SU problem” to refer to the
algebraic problem of obtaining the fluxes QR and QS from
(10, 11, 14). The minimum rule SU problem is nontrivial
because there may be multiple, positive solutions of these
equations. The model dynamics for the minimum rule SU
are defined by the differential equations (9) along with the
solutions of the minimum rule problem.

Multiple solutions of theminimum rule SU problem

Plant growth with the minimum rule SU depends on whether
the plant is C-limited, N-limited, or co-limited by C and N.
The classification is based on the current value of a modified
assimilation ratio û, defined by

û = αCS − σSγSS

α̂NR
= (1 − Γ )u. (21)

This quantity differs from u in that the numerator is the
excess rate of C assimilation beyond what is needed to use
all of the resorbed N in tissue construction rather than the
total rate of C assimilation.

The SU solution has two cases (see online resource,
Appendix B, for details), depending on whether β is larger
or smaller than 1. The two cases coincide at the bifurcation
point β = 1.

1. If β > 1, the C:N ratio for roots is higher than that of
shoots, meaning that each resource is relatively more
important to the partner that must import it than it is to
the partner that assimilates it; in this case the minimum
rule SU always has a unique solution, with QR and QS

depending on which resource is limiting.

(a) Both the shoots and roots are C-limited if û ≤
β−1 < 1; then all resources are used by the shoot
SU:

QR = 0, QS = αCS. (22)

(b) Each component is limited by its imported resource
if β−1 < û ≤ 1; then resources are shared:

QR = βû − 1

β − 1
α̂NR, QS = u−1 − 1 + βΓ

β − 1
αCS,

(23)

(c) Both the shoots and roots are N-limited if β−1 <

1 ≤ û; then the shoot SU retains its resorbed N
and a stoichiometric amount of C, while all other
resources are used by the root SU:

QR = α̂NR, QS = Γ αCS. (24)

2. If β < 1, the relative importance of the local resource
for each component is greater than that of the imported
resource; in this case the minimum rule SU has multiple
solutions whenever û is in a range in which the shoots
are C-limited while the roots are N-limited.

(a) Both the roots and shoots are C-limited if û ≤ 1 ≤
β−1, so all resources are used by the shoot SU (22).

(b) Each component is limited by its local resource
if 1 < û < β−1; here the SU system has three
solutions (22, 23, 24) and additional rules (see
“Dynamics with the minimum rule SU”) must be
used to determine how resources are distributed.

(c) Both the roots and shoots are N-limited if 1 ≤
β−1 ≤ û, so the shoot SU uses its own resorbed N
and a corresponding amount of C, while remaining
resources are used by the root SU (24).

Dynamics with theminimum rule SU

Growth dynamics are strongly influenced by the possibility
of multiple SU solutions; hence, we consider β > 1 and
β < 1 separately.

1. When β > 1, the system evolves from any initial
state to an equilibrium assimilation ratio u∗ that is the
positive solution of the equation

β(1−Γ )u2+[(1−βΓ )α−1+(β−1)γ ]u−α = 0, (25)

where

α = αC

α̂N

, γ = γS − γR

α̂N

. (26)

The dimensionless parameter α serves as a measure
of the relative availability of light to nutrients, the
latter modified slightly to include resorption, while γ
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represents the difference between shoot and root tissue
loss rates.

2. When β < 1, the dynamics are complicated by
the nonuniqueness of SU solutions in the modified
assimilation ratio range 1 < û < β−1. As noted above,
we enforce uniqueness with the additional biologically
motivated requirement that the production rates QR and
QS should be continuous whenever possible, in which
case the system evolves to a limit cycle consisting of
a phase with QR = 0 and û increasing from 1 to β−1

alternating with a phase with QS = 0 and û decreasing
from β−1 to 1.

Figure 3 shows examples of the SU solutions and the
behavior of the dynamical system for the cases β > 1
(top) and β < 1 (bottom). Panels (a) and (d) show the
extent of root production relative to the amount that would
be produced if all N in the root were utilized for root
production, while the remaining panels show the dynamics
of the assimilation ratio, root biomass, and shoot biomass.
When β > 1, the assimilation ratio evolves monotonically
to its unique stable equilibrium value (25) at a location on
the slanted line that is determined by the combination of
parameters. There is no root growth when û is small and
maximum root growth when û is large. In the intermediate
range, each SU has a surplus of its local resource and must
reject some to the other SU. Root growth is near maximum
when the C surplus in the shoot is high and near 0 when the
C surplus in the root is low.

When β < 1, there is never a point at which both SUs are
rejecting a surplus to the other. As an example, suppose the
initial state is deficient in shoots; that is, û < 1, as illustrated
in panels (e)–(f). Both components are initially C-limited,

so all of the C is used in the shoot SU (Φ(y) = 0), which
causes û to increase. The other two SU solutions arise at the
moment that û = 1; however, both of these solutions (23,
24) produce the result

1

u

du

dt
= −α̂N − (1 − σ)γS + γR < 0,

which would move the system back toward lower û and
the unique solution QR = 0, immediately eliminating
these solutions. Instead, we must assume that the shoot SU
maintains control of the C stream as long as possible; that is,
until û = β−1. At the moment û reaches this critical value,
(24) becomes the only viable solution. Shoot production is
no longer possible, so the entire C input stream is rejected to
the root. Since the system is now N-limited, root production
jumps to the maximum. This causes û to decrease, but
maximum root production stops only when û reaches 1, at
which point the system state reverses again.

Analysis and results for the continuously
differentiable symmetric ratio-based SU

The defining equations for the continuously differentiable
symmetric ratio-based SU (10, 11) can be recast as

QR = α̂NRΦ(y), QS = αCSΦ(x), (27)

where the auxiliary variables x and y are determined by a
system of two algebraic equations,

βu(x − Γ ) = Θ(y), y = uΘ(x), (28)

with u the current state of the system and

Θ ≡ 1 − Φ. (29)

Fig. 3 Numerical examples of
the two dynamical patterns with
the minimum rule SU. Panels (a)
and (d): The relative extent of
root growth (Φ(y) = QR/α̂NR)
as a function of the modified
assimilation ratio û (defined in
(21)), with Γ = 0.05; β = 2 in
panel (a); β = 0.5 in panel (b);
and equilibria marked for
α = 1/8, 1/4, 1/2, 1, 2, 4, 8
(bottom to top). Dotted lines
indicate SU solutions that are
not realized in dynamic
simulations and dashed lines
indicate instantaneous changes
in the growth rates when û

reaches its bifurcation values.
Panels (b), (c), (e), and (f) show
simulation runs with parameters
corresponding to the large dots
in panels (a) and (d) and with
γR = γS = 0.1
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The assimilation ratio dynamic equation (13) becomes

1

u

du

dt
= α̂Np(u), p(u) = αΦ(x(u)) − Φ(y(u)) − γ,

(30)

where we have explicitly identified Φ in terms of the state
variable u.

The mathematical analysis is necessarily more compli-
cated than that for the minimum rule SU. Details of the
derivations of (27), (28), and (30) and the analytical results
summarized in the remainder of this section are in Appendix
C (online resource).

Analysis of the continuously differentiable
symmetric ratio-based SU problem

The SU system (28) has these properties :

1. There is at least one solution for any state u and
parameters β and Γ .

2. Solutions are unique whenever the SU function satisfies

V (z) ≡ zΦ ′(z)
Θ(z)

≤ 1 ∀z. (31)

3. When (31) is not satisfied, multiple solutions are
possible only if β is less than a critical value βc, defined
by

βc(Γ ) ≡ Φ ′(xc)Φ
′(yc), (32)

with (xc, yc) defined as the solution of the equations

VΓ (x)V (y) = 1, W(y) = W(x)− Γ Θ ′′(x)

Φ ′(x)
, (33)

where

VΓ (x) ≡ (x − Γ )Φ ′(x)

Θ(x)
, W(z) ≡ Θ ′′(z)[Θ(z) + zΦ ′(z)]

Φ ′2(z)
.

(34)

In general, the value of βc must be determined
numerically; it can also be approximated asymptotically
for small Γ (online resource, (39)).

Growth dynamics with the continuously
differentiable symmetric ratio-based SU

Because production rates are linear functions of component
biomass, the model predicts unlimited growth for any viable
plant; however, this unlimited growth may occur in such
a way that the shoot:root ratio S/R and, equivalently,

0 0.5 1

h

0

0.5

1

c

(d)

0 0.5 1
-1

-0.5

0

0.5

1

lo
g 

(e)

u

0

0.5

1

(y
)

(a)

0 0.5 1
-1

-0.5

0

0.5

1

lo
g 

(f)

u

0

0.5

1

(y
)

(b)

0 2 4 0 2 4 6 0 2 4

u

0

0.5

1
(y

)
(c)

Fig. 4 Illustration of the properties of the PCSU and kSU systems.
Panels (a)–(c): Solid/dotted curves are the relative extent of root
biomass production Φ(y) as a function of the assimilation ratio u,
all with Γ = 0.1 (dotted where a potential equilibrium assimila-
tion ratio is unstable); dashed curves are the equilibrium relation (35),
all with γ = 0; panel (a) is the kSU with k = 1.71, 4, 10, 25, ∞
(least to most sigmoidal) and β = 0.4; panel (b) is the PCSU with
β = 2, 0.5, 0.091, 0.05 (left to right) and α = 1/8, 1/3, 1, 3, 8

(bottom to top); panel (c) is the k = 4 kSU with β = 5, 2.5, 1, 0.4, 0.2
(left to right) and α = 0.02, 0.1, 1, 6, 16 (bottom to top). Panel (d):
The critical value βc for the kSU, with Γ = 0.1. Panels (e)–(f): Stabil-
ity boundaries for the equilibrium assimilation ratio, all with γ = 0;
panel (e) shows the PCSU, the kSU with k = 4, 10, 25, and the mini-
mum rule (left to right), all with Γ = 0.1; panel (f) shows the PCSU
with Γ = 0, 0.2, 0.4 (outer to inner)
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the assimilation ratio u, approach equilibrium values.
Moreover, the differential equation for u is decoupled from
the equations for the state variables. These features make the
dynamics of the assimilation ratio important to understand.
Equilibrium assimilation ratios must satisfy

Φ(y) = αΦ(x) − γ (35)

along with the SU equations (28). The growth model has
these properties:

1. There is a unique equilibrium assimilation ratio 0 ≤
u∗ ≤ ∞.

2. The equilibrium assimilation ratio is asymptotically
stable whenever

Φ ′(x∗)Φ ′(y∗) < β, (36)

where (x∗, y∗) is the solution of (35) and

βy(x − Γ ) = Θ(x)Θ(y), (37)

which is obtained by eliminating u from (28). This is
always true when the SU satisfies (31) or when β >

βc. When neither of these conditions is met, stability
depends on α and γ as well as β and Γ (see Fig. 4,
panels (e) and (f)).

Results for the PCSU and the kSU

For the PCSU, the inequality (31) is only satisfied for z ≤ 1,
so uniqueness of solutions depends on having β ≥ βc,
which is given asymptotically (online resource (39)), with
y0 = 1, Φ1 = −1/3, and Φ2 = −4/3, as

βc ∼ 1 − 2Γ

9
.

For the kSU, uniqueness is guaranteed when k ≤ 1 and
requires β ≥ βc otherwise; the relationship of βc and k

(h = 1/k) is shown in Fig. 4, panel (d).
Additional properties of the SU system are illustrated in

Fig. 4, panels (a)–(c), as plots of root production relative
to its possible maximum (QR/α̂NR = Φ(y)) as a function
of the current assimilation ratio u. Panel (a) shows the
effect of SU efficiency on the uniqueness of solutions when
β = 0.4. The first curve has efficiency of 2/3, matching
the PCSU, and shows unique solutions for all u. The last
curve is the minimum rule SU, showing nonuniqueness
over a large range of u, and the intermediate curves show
the progression from always unique to a large range of u

with multiple solutions. Panel (b) shows how nonuniqueness
develops with decreasing β for the PCSU. The third curve
from the left in panel (b) has β = βc, which is about 0.091
for Γ = 0.1; this curve shows a vertical tangent at one point.
Any curve with smaller β, such as the rightmost curve in

the panel, shows an interval of u values for which the SU
equations have three solutions. More importantly, there is an
interval α1 < α < α2 where the stability criterion (36) is not
satisfied; hence, the unique equilibrium assimilation ratio,
which is determined by the intersection of the SU curve
(28) with the (dashed) equilibrium curve (35) is unstable
for moderate values of α, where the intersection point is in
the dotted portion of the SU curve. Panel (c) is similar to
panel (b), but for the kSU with k = 4. There are two curves
in panel (a) that are the same or nearly the same as one
curve in one of the other panels. The least sigmoidal curve
in panel (a) is almost identical to the second curve from the
left in panel (b), as the behavior of the kSU with k = 1.71 is
very similar to that of the PCSU. The second least sigmoidal
curve in panel (a) is the same as the second curve from the
right in panel (c).

The assimilation ratio stability properties of the PCSU
and kSU are illustrated in panels (d)–(f) of Fig. 4. Panel (d)
shows the critical value of β corresponding to guaranteed
stability, as a function of the parameter h = 1/k. h = 0 is
the minimum rule SU, with an efficiency of 0 and βC = 1.
As h increases to 1, the efficiency of the SU decreases
and the corresponding critical β decreases as well. Panel
(e) shows the stability bifurcation diagram for the PCSU
(leftmost curve), the minimum rule SU (rightmost curve),
and the intermediate values k = 4, 10, 25; all of these
correspond to the large dots in panel (d). Panel (f) shows
the effect that Γ has on stability. The outermost curve, for
Γ = 0, is symmetric about log α = 1. As Γ increases, the
unstable region decreases. The decrease is more prominent
for large α than small because the effect of N resorption is
more important when N assimilation is slow. Note that the
middle curve corresponds to the k = 4 curve of panel (e).

Figure 5 shows the dynamics of the assimilation ratio.
The dependence of the equilibrium value on α is shown in
panel (a). The remaining panels show plots in the uP phase
plane for the five points marked as solid dots in panel (a).
When β > βc (the two lowest curves in panel (a)), u∗ is a
strictly increasing function of α, P(u) is strictly decreasing,
and the assimilation ratio changes monotonically from any
initial value to the stable equilibrium. When β < βc, there
are five possibilities, depending on how the values of α and
u∗ compare with the local extrema (α1, u1) and (α2, u2)

(with α1 < α2) of u∗ versus α. These five possibilities are
shown in the remaining panels. Panels (b) and (c) have α <

α1. The stable equilibrium is approached monotonically if
starting from u < u1. If starting from u > u2, u decreases
to u1; at that point, continuous change in du/dt is no longer
possible, so the solution jumps to the upper branch and then
moves monotonically to u∗. Panels (d) and (e) have α > α2,
with behavior symmetric to that where α < α1. In the case
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Fig. 5 Panel (a): Equilibrium assimilation ratio dependence on the
parameter α (26) for the kSU with Γ = 0.05, γ = 0, and β =
0.2, 0.4, 0.811, 2, 5, from top to bottom (βc = 0.811), with the dotted
portions showing equilibrium ratios that are unstable, and dots for the
β = 0.4 curve for α = 0.02, 0.1, 1, 6, 16. Panels (b)–(f): The assimi-
lation ratio increase function P (30) with β = 0.4, Γ = 0.05, γ = 0,

and the values of α marked with dots in panel (a). The assimilation
ratio u (12) increases when P > 0 and decreases when P < 0; hence,
trajectories in the uP plane are curves that move to the right when
P > 0, to the left when P < 0, and jump to a different part of the
curve when continuous movement is not possible

of moderate values of α (panel (c)), the unique equilibrium
ratio cannot be reached from either direction; instead, the
assimilation ratio achieves a limit cycle with a small range
of u values and a periodic discontinuity in du/dt . Note that
the additional rule used to select one of the nonunique SU
solutions (trying to maintain continuity of du/dt) does not
apply when the initial assimilation ratio is between u1 and
u2. In this case, the correct branch of the p versus u curve
is unknown, as it depends on information from before the
initial point.

Figure 6 shows the dynamics of u and R for the five cases
depicted in Fig. 5, panels (b)–(f). The different values of α

are achieved by varying α̂N ; hence, α = 0.02 (Fig. 5, panel
(b)) corresponds to the curves in Fig. 6 that show the lowest
assimilation ratio u and the highest root growth. In panel (c),
the bottom curve, for α = 0.02, shows a monotone decrease
in u with a discontinuous derivative, while the second curve,
for α = 0.1, shows a discontinuous derivative with a change
from decreasing u to increasing u. The top two curves in this
panel continuously approach the equilibrium assimilation
ratio observed in the corresponding plots of Fig. 5. Panel (a)
shows corresponding features for the case of a low starting
assimilation ratio.

General results

Regardless of the choice of SU, the model should be
able to predict system behavior that is consistent with
general biological principles. Here we consider two issues
regarding the response of the system to changes in resource
availability or assimilation capacity. Note that we need
only consider changes in the dimensionless parameter α:
either an increase in αC or a decrease in αN result in an
increase in α, and the opposite changes produce a decrease
in α.

First, we consider how the equilibrium shoot:root ratio
of the plant changes with α; second, we consider the extent
to which the local control allocation strategy of the model
successfully responds to changes in α.

Response of the system to changes in resource
availability

Figure 7 illustrates the dependence of the equilibrium shoot-
root ratio on changes in the relative availability of C and N.
The panels on the left are S/R, while those on the right are
the ratio of the N contents SN = νSS and RN = νRN .
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Fig. 6 Simulations for the kSU
with k = 4, β = 0.4, Γ = 0.05,
γR = γS = 0.1, αC = 1, and
α̂N = 50, 10, 1, 1/6, 1/16,
corresponding to the five cases
illustrated in Fig 5

t

0

1

2

3

u

(a)

t

0

1

2

3

4

ln
R

(b)

t

0

1

2

3

u

(c)

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

t

0

1

2

3

4

ln
R

(d)

1. In all cases, decreasing the availability of one of the
resources causes a readjustment to build more of the
component that collects that resource.

2. A reasonable empirical model for equilibrium
shoot:root ratios is

S

R
≈ β−1/2α−m,

SN

RN
≈ β1/2α−m,

where .6 < m < .8 measures the sensitivity of the
component balance to variation in resource availability.
In general, m depends on the SU efficiency and the
stoichiometric ratio β, and for the unstable range it
depends on the assimilation rate constant ratio α as
well.

3. Larger β makes C more concentrated in roots and N
more concentrated in shoots, as would be expected
from the interpretation of β as the relative need for the
imported resource compared with the local resource. In
the specific case α = 1, the equilibrium ratios do not
depend on SU efficiency.

4. Drivers of instability always increase the response of
S/R and SN/RN to changes in resource availability:

(a) Higher efficiency (higher k, leftward on the graph),
increases the (negative) slope of the plots.

(b) Lower β increases the (negative) slope of the plots.
(c) For the cases where the combination of k and

β permits instability, the curves are noticeably
nonlinear, with a larger (negative) slope in the
moderate range of alpha.

Optimal balanced growth

The local allocation rule in our model allows a plant to
adjust its strategy as resource availability changes, but only
in an inflexible way dictated by the behavior of the root and
shoot SUs corresponding to the given input streams. It is
natural to ask whether the additional flexibility of a global
control mechanism might make the plant respond better by
controlling those input streams. We can implement global
control by introducing allocation parameters κC and κN to
represent the fractions of C and N that are sent to the local
SU. Local control requires that these parameters be unity,
but we now postulate the existence of an unspecified global
control mechanism that could set κC < 1, for example,
thereby diverting some of the C resource stream directly
to the root. The parameter κ is used in a similar way in
Cheeseman (1993), except that it is set to a constant value
there, while we are allowing it to be chosen dynamically
to achieve growth behavior that is optimal according to
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Fig. 7 The equilibrium
shoot:root ratio for the PCSU
(panels (a) and (b)) and the
minimum rule SU (panels c and
d), with β = 10, 2, 0.5, 0.1
(bottom to top on the left panels
and top to bottom on the right
panels). Panels (a) and (c) show
the shoot:root ratio in terms of C
content, while panels (b) and (d)
use N content
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some specified measure. Total biomass is not necessarily the
appropriate measure, as it is unclear whether units of root
and shoot should be considered to be of equal value.

While a complete investigation of the optimal control
problem is outside the scope of this work, two results
suggest the capacity for local control to achieve optimal or
near-optimal outcomes.

Optimal balanced growth for the PCSU and kSU

First suppose the function Φ satisfies the requirement

Φ ′(z) <
Φ(z)

z
, (38)

which is the case for both the PCSU and the kSU (see
online resource, Appendix D) and that β > βc, so that
the equilibrium assimilation ratio is stable. When these
requirements are met, any pair (κC, κN) of fixed allocation
parameters results in a stable equilibrium assimilation ratio
u∗(κC, κN), with u∗(1, 1) the equilibrium assimilation ratio
for local control. The stability of u∗ means that the root and
shoot have a common growth rate λ(κC, κN), which we take
as a working definition of “balanced growth” in the context
of our linear growth model. Since this balanced growth
rate applies to both root and shoot, there is no ambiguity
in defining optimal to be that pair (κC, κN) that produces
the largest growth rate. We show in Appendix D (online

resource) that the largest growth rate under these conditions
is always achieved with κC = κN = 1; hence, the optimal
global control strategy for the long term in this case is to use
local control.

Optimal approach to balanced growth

It is not surprising that local control tends to achieve the
best long-term outcome, as resources diverted directly to the
partner are more likely to be wasted than resources sent first
to the local SU. The more interesting question is whether
local control can be bested by a global control strategy in the
approach to balanced growth by making u approach the final
optimal value u∗(1, 1) more quickly than is accomplished
with local allocation. Indeed, the theoretical results of Iwasa
and Roughgarden (1984) suggest that it would be optimal
for the plant to divert resources so as to achieve balanced
growth as quickly as possible. However, the question needs
investigation because the Iwasa and Roughgarden model is
for a system with only one resource.

While a full solution of the optimal control problem is
beyond the scope of this paper, it is a relatively simple
matter to compare local control against the global strategy
suggested above, by choosing a two-phase approach in
which all resources are initially diverted to the deficient
partner in phase 1 and then the κ values are reset to 1 as
soon as the stable equilibrium assimilation ratio u∗(1, 1)
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is achieved. (A strategy consisting of two discontinuous
phases is known in control theory as a “bang-bang”
strategy—see Hocking (1991) for example.)

Figure 8 illustrates the comparison between a purely
local allocation strategy and the two-phase strategy of first
shunting all C to the root so as to achieve the ultimate
stable equilibrium assimilation ratio as quickly as possible
followed by local control to maintain that assimilation ratio.
This strategy, shown by the solid curves, is clearly inferior
to the purely local control strategy shown by the dashed
curves. The short-term benefit of more rapid root growth is
not enough to compensate for the inadequate growth of C
assimilation capacity otherwise achieved with local control.

Discussion

Allocation of biomass between roots and shoots in plants
has often been modeled using some form of global control
that optimally allocates resources to maximize the whole-
plant growth rate. This approach can be problematic because
it assumes foreknowledge of environmental conditions and
the optimal allocation strategy for those conditions, and
because the true underlying physiological mechanisms that
could achieve such global control, provided it actually
exists in nature, are complicated to specify. We show here
that such global control is not necessary for mathematical
modeling of plant growth and allocation. In the local control
theory of plant resource allocation that we present here, each
component (shoot or root) is allowed to use as much as it
can of its locally produced resource (C or N, respectively),
given organ stoichiometry. This mechanism of only sharing
surplus resources can be considered a fundamental, higher-
level rule of allocation operating between syntrophic entities
(i.e., between components within an organism or between
organisms). Among plants, it is likely that the lower-level
physiological processes achieving this higher-level rule are
complex and may vary among plant species, but in our

model, these do not need to be specified. This differs
from dynamic optimization and global control in that our
model does not prescribe what should be maximized, nor
does it dictate how a plant should maximize it. Instead,
in the local control theory, the optimal outcome emerges
from modeling the higher-level rule of only sharing surplus
resources, making it more generally applicable. Such
purely local allocation rules can achieve the same optimal
allocation outcome as a global allocation rule, provided the
equilibrium assimilation ratio (the ratio of C assimilation
rate to total root N collection rate during balanced growth)
is stable, as it is often expected to be in syntrophic systems.
Thus, the mechanism of local allocation is sufficient to
allow plants to respond to a changing environment so as to
maximize growth and allows optimal patterns of root-shoot
allocation to emerge from the dynamics of the model, rather
than being specified by resource partitioning functions.

Stability and natural systems

Stability of the equilibrium ratio of C assimilation to N
assimilation (u), and the corresponding equilibrium ratio of
shoot biomass to root biomass, depends on three factors:
the SU efficiency (1 for the minimum rule, 2/3 for the
PCSU, and 2−k for the kSU), the relative value of the
imported resource to the local resource (β) , and the
resource accessibility balance (α), as shown in Fig. 4,
panels (d)–(f). Below, we describe the conditions under
which stability arises in our model, relative to conditions
frequently observed in natural systems.

1. Stability is guaranteed when the SU efficiency is very
low.

2. Stability is guaranteed when the imported resource
is of greater value to each component than is the
locally produced resource (that is, the C:N ratio of
the N-producing component is higher than that of the
C-producing component).

0.5

1

1.5

2(a)
local
bang-bang

0

1

2

(b)

0 2 4 6 0 2 4 6 0 2 4 6
0

1

2

(c)

Fig. 8 Simulations for the PCSU with β = 2, Γ = 0.05, γR = γS =
0.1, αC = α̂N = 1; the dashed curves are for local allocation κC = 1
and the solid curves are κC = 0 until u = u∗(1, 1) followed by local

allocation. The plots show that the overall growth of roots as well as
shoots is decreased by a strategy of achieving balance as quickly as
possible rather than allowing local allocation to operates
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3. When neither of these two sufficient conditions holds,
there is a threshold value of the stoichiometric ratio for
shoots and roots (β) for stability that increases from 0
for very inefficient SUs to 1 for the maximally efficient
SU (the minimum rule SU).

4. Irrespective of SU efficiency, the equilibrium assim-
ilation ratio can still be stable if there is sufficient
imbalance in the availability of resources (Fig. 4, panels
(e)–(f)).

The second of these conditions is perhaps the most
important, since it describes precisely the context under
which there would be natural selection for symbiosis, and
so is often expected to be met in syntrophic systems. In
vascular plants, the N requirement for C assimilation is
considerably larger than for N uptake, which implies a large
value for β. The importance of this point is reinforced by
noting that nitrogen is not necessarily the limiting resource
represented by “N.” For example, carbon fixation can be
limited by the regeneration of ribulose bis-phosphate (Mott
et al. 1986). But again, this would make the C:N ratio of
shoots lower than that of roots (with phosphorus as “N”).
For syntrophies in which the components have lower need
for the imported resource, β may be less than one, but
perhaps not low enough to permit instability.

Should none of the three sufficient conditions for
stability be met, the deciding factor is the dissimilarity of
assimilation rate coefficients αC and αN for photosynthate
and inorganic nutrient respectively. These coefficients
represent a composite of plant traits, such as specific leaf
area, specific root length, and C:N ratio, which determine
the assimilation efficiency of a unit of shoot or root biomass
(Reich et al. 2003), as well as environmental factors, such
as the availability of sunlight and soil nutrients. Large
differences in the assimilation rate coefficients push the
system toward stability, whereas small differences push it
toward instability. Our model treats these coefficients as
constants, but in a real system they may vary over time as
plants plastically grow organs with different trait values or
as environmental conditions change. Thus, a system that
is sufficiently efficient and has stoichiometry sufficiently
favorable for instability might alternate between periods of
stability and instability. Separating plant trait-related factors
and environment-related factors into different parameters
would allow greater flexibility in modeling the interactions
between components of specific syntrophic systems and
their plastic responses to environmental variation.

When the equilibrium assimilation ratio u∗ is unstable,
the system oscillates between periods when a large root
construction rate causes the assimilation ratio to decrease
beyond u∗ and periods when a large shoot construction rate
forces it to increase beyond u∗ (see Fig. 5, panel (d)). The
system therefore cycles between conditions corresponding

to mutualism (simultaneous sharing of locally produced
resource) and parasitism (hoarding of the locally produced
resource while still receiving the imported resource),
analogous to the concept of the mutualism-parasitism
continuum (Johnson et al. 1997; Bronstein 2001). If it has
enough of the imported resource, each SU will consume
all of its local resource, causing rapid growth while
inhibiting its partner’s growth. If this trend is unchecked, the
assimilation ratio will move beyond its stable value and the
relationship will become parasitic. However, this condition
in our syntrophy model is self-correcting. The more the
growth of the parasitic partner, the more of the local
resource it has available; eventually there is so much that
some must be shared due to tissue stoichiometry. Instability
occurs when each of the components can acquire resources
fast enough, due to their comparable alphas, to take a
turn as the parasite. This alternating parasitism is checked,
however, when either of the two sufficient conditions for
stability (1 and 2 in the list above) are satisfied. While
the true biological mechanisms underlying the mutualism-
parasitism continuum are of course more complicated than
those in our model, the context-dependency of stability in
resource sharing in our model corresponds to what is observed
in natural symbioses (e.g., Denison and Kiers 2004).

Local versus global control

Any model of plant growth needs to have rules for allocating
resources to the different organs that comprise the plant. It
is intuitive to prefer allocation outcomes to be optimal in
some sense, such as producing a maximum rate of biomass
growth. This is the premise of Iwasa and Roughgarden
(1984), as generalized by Velten and Richter (1995), which
identified the allocation strategy that achieves optimal
growth of a plant model in which carbon and water are
the only scarce resources. In general, one might expect the
greater flexibility of global control to yield evolutionarily
superior outcomes than can be produced via local control.
This is not the case in our local control theory of plant
resource allocation, as we demonstrated by comparing our
standard model with a variant that incorporates global
control by allowing time-dependent fractions of locally
produced resources to be sent directly to the partner without
having to be rejected by the local SU. In the long-
term simulation (with parameters such that the equilibrium
assimilation ratio is stable), shunting any fixed portion
of either resource directly to the partner, as is assumed
for above- versus belowground carbon allocation in some
in some dynamic global vegetation models (e.g., Ostle
et al. 2009), rather than sharing only the rejection flux,
always decreases the long-term growth rate, compared with
local control. Thus, local control produces optimal growth
in the long term.
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The balanced growth (or functional equilibrium) hypoth-
esis states that exogenous resource collection rates always
match the weighted average stoichiometry across all of the
different molecules that comprise the plant (Shipley and
Meziane 2002). This hypothesis only applies under the
restrictive assumptions of a constant environment and no
damage to the plant that would upset the balanced resource
collection capacities. However, plants often experience dra-
matic changes in the ability to acquire resources, either
due to changes in the availability of resources or assimila-
tion capacity (e.g., defoliation by a pest). The local control
model states that the way to restore the balance is to allocate
endogenous resources so as to increase the collection capac-
ity for the deficient exogenous resource, without decreasing
the collection rate of the excess resource. Moreover, in
the absence of resource storage, intuition suggests that the
best short-term strategy in such cases would be to allocate
all resources to growing the deficient organ until the opti-
mal ratio of resource assimilation capacities is achieved.
This strategy is optimal in the simpler setting of Iwasa and
Roughgarden (1984) and Velten and Richter (1995), but it
does not perform as well as local control in our model.
The initial situation for the simulation presented in Fig. 8
is the aftermath of a sudden loss of N assimilation capacity.
The two-phase strategy of initially shunting all C directly
to the root has the short-term benefit of maximizing imme-
diate root growth. However, the cost is that the plant fails
to invest any resources into maintaining its C assimilation
capacity. The more rapid loss of this capacity that occurs
with the two-phase strategy as compared with local alloca-
tion has a long-term detrimental effect on root growth by
decreasing the future flow of excess C from shoot to root.
Local control seems to find the right balance between these
benefits. This result illustrates the concept of the time-value
of uptake capacity, in which earlier investments in uptake
capacity yield greater uptake in the long-term due to the
compounding effect (Lerdau 1992). While this concept has
previously been applied to leaves (Westoby et al. 2000), our
model suggests that it should apply equally well to roots, as
a scenario in which there is a sudden loss of C assimilation
is analogous.

The equilibrium assimilation ratio is always optimal;
however, it can only be achieved through local control
when it is stable, such as when β > 1, which should
usually be the case in natural systems like most vascular
plants. When the ratio is unstable, the maximal growth rate
can only be achieved through global control. The optimal
behavior in this case appears to be to use local allocation
until the equilibrium assimilation ratio is achieved and then
use global control to maintain that assimilation ratio. Thus,
the success of local control in managing resources in a
theoretical plant model in most cases suggests that models
of plant growth do not require an allocation submodel that

assumes global control and considers strategies to achieve
some optimal outcome.

Assumptions, caveats, and extensions

The scope of our model is necessarily limited. Consistent
with the spirit of many ecological models, we use an
idealized abstraction of a real plant as having only two
components (root and shoot). We focus exclusively on
growth, not on reproduction or survival. The model does
not incorporate any characterization of the ecological and
physiological processes whereby a plant acquires the input
resources, but proposes a possible dynamic mechanism
explaining how a balance between the partners (“root”
and “shoot”) could be achieved and maintained, once
these resources have been acquired. It will be a fairly
straightforward exercise to couple the model inputs (UC

and UN ) to modules that relate rates of photosynthesis
and nitrogen assimilation to environmental parameters (e.g.,
light intensity, temperature, soil chemistry). Likewise, we
do not explicitly model competition between plants for light
or nutrients, although it will be straightforward to develop
an individual-based population model in which each plant
follows the rules proposed in our model but is coupled to a
shared environment using these additional modules.

The local control theory of plant resource allocation
developed here makes several simplifying assumptions that
may need to be relaxed in application to real biological
systems. Realistic mortality mechanisms would need to be
incorporated in order to provide insights into the adaptive
value of different allocation strategies that involve resource
storage, defense, stoichiometric plasticity, or dormancy.
As is true of many plant growth models, complicated
processes have been abstracted into single parameters.
For example, the σS parameter that controls the fraction
of N in leaf turnover that can get recycled is actually
a combination of resorption efficiency (Aerts 1996) and
herbivory. The former is a functional trait, while the latter
is a combination of ecological conditions and the extent
to which resources are allocated to chemical or physical
defenses. To fully understand the complex determinants
of trade-offs between allocation to growth versus defense,
the resorption efficiency and herbivory factors should be
decoupled, but the latter would instead need to be coupled
to the assimilation coefficient αC to capture growth-defense
trade-offs (Herms and Mattson 1992); i.e., more resources
used for defense against herbivory means less resources
used for the machinery needed for C assimilation.

The interacting components (roots and shoots) in the
local control model presented here are characterized as
“biomass” with fixed stoichiometry. Actual plants display
considerable plasticity in nutrient concentrations of their
organs, in response to changing environmental conditions
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(Rozendaal et al. 2006). Moreover, both roots and shoots
may contain energy or nitrogen-rich storage compounds
that require minimal maintenance (Chapin et al. 1990). As
a result, precise quantitative model predictions, such as
critical values for a model parameter, should not be viewed
as absolutes. However, we suggest that qualitative patterns,
especially trends in response to changes in environment,
represent robust predictions.

Implications for modeling syntrophic mutualisms

The local control theory of plant resource allocation that
we have developed here can be applied or adapted to a
wide variety of obligate syntrophic relationships, including
mutualisms among organisms, particularly since local
control as a mechanism for resource allocation between
partners implicitly assumes that the unit of selection is
the partner, not the holobiont. Mycorrhizal fungi are
obligate symbionts of plants that are largely incapable of
acquiring carbohydrates on their own, but are more efficient
than plant roots in acquiring nutrients from soil. They
trade soil- and litter-derived nutrients, such as phosphorus,
for plant-derived carbohydrates (Smith and Read 2008).
Our model would require some modification in order
to be applied to plant-mycorrhizal interactions, since it
assumes that each partner is incapable of acquiring the
resource it imports from its partner. However, mycorrhizal
fungi produce structures inside plant roots that absorb
carbon and structures outside of the plant root that absorb
resources from soil. Allocation to such intra- versus extra-
radical structures is plastic for arbuscular mycorrhizae and
depends on competitive interactions with other arbuscular
mycorrhizae inside the plant root (Engelmoer et al. 2013),
which is analogous to the root-shoot system in our model.

There are also many examples of syntrophic symbiosis
in microbial systems, in which one bacterial population
provides an obligate requirement of another. Yeoh et al.
(1968) reports results from interacting bacterial populations,
in which each supplies a vitamin requirement for the
other, but one also produces an inhibitor. There were
large amplitude oscillations in continuous culture of
these bacteria, superficially resembling those in Fig. 3,
panel (e). Adding a proteolytic enzyme (presumably
destroying the inhibitor) lead to a growth burst stimulated
by the mutualisitic interaction, followed by decline as
the enzyme washed out, with oscillations ultimately
resuming. We speculate that the dynamical mechanisms
causing oscillations in this mutualist/inhibitor system
resemble those analyzed in this paper, with Fig. 4 panels
(a)–(c) showing inhibition of root biomass production
in response to shortage of photosynthate. Likewise,
Weedermann et al. (2013) developed a model of anaerobic
digestion with syntrophy and showed that inhibition may

introduce regions with multiple steady states and may
stabilize some equilibria. A multi-species generalized
Lotka-Volterra model with both positive (mutualist) and
negative (inhibitory) terms explains observed experimental
results defining the effects of antibiotics on Clostridium
difficile infections in mammals (Jones and Carlson 2018).

The local control theory of plant resource allocation
presented here is similar to the Muller et al. (2009)
DEB model of corals, with the shoot analogous to the
algal symbiont (the source of photosynthate) and the root
analogous to the animal host (the source of nitrogen). In
that model, the interspecific interaction involves sharing the
surplus and, with parameters chosen as representative of
a scleractinian coral, the symbiont to host biomass ratio
stabilizes, as in our model. However, the Muller et al.
(2009) model has other potentially stabilizing processes,
including intraspecific processes involving energy reserves
for each species. Whether these processes, local allocation,
or a combination of these, is responsible for the stability
of that model is not clear. However, the analysis in the
present paper points clearly to sharing the surplus as the
primary stabilizing mechanism. Furthermore, our analyses
indicating no need for global control of resource allocation
in plants gives added credibility to the conclusion by Muller
et al. (2009) that active mechanisms, such as the digestion
or expulsion of symbionts, are not necessary for a relatively
stable symbiont density.

Our model shares other properties with more complex
counterparts. For example, Muller et al. (2009) showed
that the symbiont to host ratio decreases with increasing
irradiation (corresponding to increasing αC) and increases
with increasing availability of dissolved inorganic nitrogen
(corresponding to increasing αN ), consistent with the
simpler model here (Fig. 7). Cunning et al. (2017) cites
many observations of negative trends between irradiance
and symbiont density and one study in which increasing
symbiont to host ratio increases with increasing dissolved
inorganic nitrogen in the environment.

Looking forward, there is a growing literature with
applications of models incorporating syntrophic interactions
to societally important challenges, such as optimizing plant-
microbial interactions in agricultural settings to maximize
crop yields, modeling the growth dynamics of infectious
agents confronted with antibiotic inhibitors, and accurate
modeling of vegetation-climate feedbacks in Earth systems
models (Fisher and et al. 2018). Environmental change can
also impact plant-microbe interactions within a plant (e.g.,
nitrogen fixation), leading to non-monotone dose-responses
to a contaminant (Priester et al. 2012, 2017; Klanjscek
et al. 2017) caused by the interplay of the demands of
energy-intensive N fixation with the benefits of enhanced
supply of nutrient. The work reported in this paper points
to a potential role for mechanistic models of syntrophy
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where the observed outcome (apparent mutualism versus
parasitism) emerges from the dynamics and is not assumed
from the beginning.
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